Cited Literature
Direct Collaboration
Fan, C., Keeffe, J. R., Malecek, K. E., Cohen, A. A., West, A. P., Baharani, V. A., Rorick, A. V., Gao, H., Gnanapragasam, P. N. P., Rho, S., Alvarez, J., Segovia, L. N., Hatziioannou, T., Bieniasz, P. D., & Bjorkman, P. J. (2025). Cross-reactive sarbecovirus antibodies induced by mosaic RBD-nanoparticles. bioRxiv, 2025.01.02.631145. https://doi.org/10.1101/2025.01.02.631145
Fan, C., Cohen, A. A., Park, M., Hung, A. F.-H., Keeffe, J. R., Gnanapragasam, P. N. P., Lee, Y. E., Gao, H., Kakutani, L. M., Wu, Z., Kleanthous, H., Malecek, K. E., Williams, J. C., & Bjorkman, P. J. (2022). Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity, 55(12), 2419-2435.e10. https://doi.org/10.1016/j.immuni.2022.10.019
Beacon-Related Literature
Agrafiotis, A., Neumeier, D., Hong, K.-L., Chowdhury, T., Ehling, R., Kuhn, R., Sandu, I., Kreiner, V., Cotet, T.-S., Shlesinger, D., Laslo, D., Anzböck, S., Starkie, D., Lightwood, D. J., Oxenius, A., Reddy, S. T., & Yermanos, A. (2023). Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen specificity. iScience, 26(3), 106055. https://doi.org/10.1016/j.isci.2023.106055
Asrat, S., Devlin, J. C., Vecchione, A., Klotz, B., Setliff, I., Srivastava, D., Limnander, A., Rafique, A., Adler, C., Porter, S., Murphy, A. J., Atwal, G. S., Sleeman, M. A., Lim, W. K., & Orengo, J. M. (2023). TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells. Cell Reports Methods, 3(7), 100522. https://doi.org/10.1016/j.crmeth.2023.100522
Bagnoli, J. W., Ziegenhain, C., Janjic, A., Wange, L. E., Vieth, B., Parekh, S., Geuder, J., Hellmann, I., & Enard, W. (2018). Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nature Communications, 9(1), 2937. https://doi.org/10.1038/s41467-018-05347-6
Bitounis, D., Jacquinet, E., Rogers, M. A., & Amiji, M. M. (2024). Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nature Reviews Drug Discovery, 1–20. https://doi.org/10.1038/s41573-023-00859-3
Boehmer, L. von, Liu, C., Ackerman, S., Gitlin, A. D., Wang, Q., Gazumyan, A., & Nussenzweig, M. C. (2016). Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nature Protocols, 11(10), 1908–1923. https://doi.org/10.1038/nprot.2016.102
Chai, M., Guo, Y., Yang, L., Li, J., Liu, S., Chen, L., Shen, Y., Yang, Y., Wang, Y., Xu, L., & Yu, C. (2021). A high-throughput single cell-based antibody discovery approach against the full-length SARS-CoV-2 spike protein suggests a lack of neutralizing antibodies targeting the highly conserved S2 domain. Briefings in Bioinformatics, 23(3). https://doi.org/10.1093/bib/bbac070
Cheng, R. Y.-H., Rutte, J. de, Ito, C. E. K., Ott, A. R., Bosler, L., Kuo, W.-Y., Liang, J., Hall, B. E., Rawlings, D. J., Carlo, D. D., & James, R. G. (2023). SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells. Nature Communications, 14(1), 3567. https://doi.org/10.1038/s41467-023-39367-8
Cohen, A. A., Gnanapragasam, P. N. P., Lee, Y. E., Hoffman, P. R., Ou, S., Kakutani, L. M., Keeffe, J. R., Wu, H.-J., Howarth, M., West, A. P., Barnes, C. O., Nussenzweig, M. C., & Bjorkman, P. J. (2021). Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science (New York, N.y.), 371(6530), 735–741. https://doi.org/10.1126/science.abf6840
Crosnier, C., Staudt, N., & Wright, G. J. (2010). A rapid and scalable method for selecting recombinant mouse monoclonal antibodies. BMC Biology, 8(1), 76–76. https://doi.org/10.1186/1741-7007-8-76
Dizicheh, Z. B., Chen, I.-L., & Koenig, P. (2023). VHH CDR-H3 conformation is determined by VH germline usage. Communications Biology, 6(1), 864. https://doi.org/10.1038/s42003-023-05241-y
Dugan, H. L., Stamper, C. T., Li, L., Changrob, S., Asby, N. W., Halfmann, P. J., Zheng, N.-Y., Huang, M., Shaw, D. G., Cobb, M. S., Erickson, S. A., Guthmiller, J. J., Stovicek, O., Wang, J., Winkler, E. S., Madariaga, M. L., Shanmugarajah, K., Jansen, M. O., Amanat, F., … Wilson, P. C. (2021). Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 54(6), 1290-1303.e7. https://doi.org/10.1016/j.immuni.2021.05.001
Eyssen, L. E.-, Ramadurai, S., Abdelkarim, S., Buckle, I., Cornish, K., Lin, H., Jones, A., Stephens, G., & Owens, R. (2025). From Llama to Nanobody: A Streamlined Workflow for the Generation of Functionalised VHHs. BIO-PROTOCOL, 14(1341). https://doi.org/10.21769/bioprotoc.4962
Fan, C., Cohen, A. A., Park, M., Hung, A. F.-H., Keeffe, J. R., Gnanapragasam, P. N. P., Lee, Y. E., Gao, H., Kakutani, L. M., Wu, Z., Kleanthous, H., Malecek, K. E., Williams, J. C., & Bjorkman, P. J. (2022). Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity, 55(12), 2419-2435.e10. https://doi.org/10.1016/j.immuni.2022.10.019
Frenken, L. G. J., Linden, R. H. J. van der, Hermans, P. W. J. J., Bos, J. W., Ruuls, R. C., Geus, B. de, & Verrips, C. T. (2000). Isolation of antigen specific Llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 78(1), 11–21. https://doi.org/10.1016/s0168-1656(99)00228-x
Fu, D., Zhang, G., Wang, Y., Zhang, Z., Hu, H., Shen, S., Wu, J., Li, B., Li, X., Fang, Y., Liu, J., Wang, Q., Zhou, Y., Wang, W., Li, Y., Lu, Z., Wang, X., Nie, C., Tian, Y., … Guo, Y. (2021). Structural basis for SARS-CoV-2 neutralizing antibodies with novel binding epitopes. PLoS Biology, 19(5), e3001209. https://doi.org/10.1371/journal.pbio.3001209
Goldstein, L. D., Chen, Y.-J. J., Wu, J., Chaudhuri, S., Hsiao, Y.-C., Schneider, K., Hoi, K. H., Lin, Z., Guerrero, S., Jaiswal, B. S., Stinson, J., Antony, A., Pahuja, K. B., Seshasayee, D., Modrusan, Z., Hötzel, I., & Seshagiri, S. (2019). Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Communications Biology, 2(1), 304. https://doi.org/10.1038/s42003-019-0551-y
Hanke, L., Das, H., Sheward, D. J., Vidakovics, L. P., Urgard, E., Moliner-Morro, A., Kim, C., Karl, V., Pankow, A., Smith, N. L., Porebski, B., Fernandez-Capetillo, O., Sezgin, E., Pedersen, G. K., Coquet, J. M., Hällberg, B. M., Murrell, B., & McInerney, G. M. (2022). A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nature Communications, 13(1), 155. https://doi.org/10.1038/s41467-021-27610-z
Harmsen, M. M., Ruuls, R. C., Nijman, I. J., Niewold, T. A., Frenken, L. G. J., & Geus, B. de. (2000). Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Molecular Immunology, 37(10), 579–590. https://doi.org/10.1016/s0161-5890(00)00081-x
Horns, F., Martinez, J. A., Fan, C., Haque, M., Linton, J. M., Tobin, V., Santat, L., Maggiolo, A. O., Bjorkman, P. J., Lois, C., & Elowitz, M. B. (2023). Engineering RNA export for measurement and manipulation of living cells. Cell, 186(17), 3642-3658.e32. https://doi.org/10.1016/j.cell.2023.06.013
Huo, J., Bas, A. L., Ruza, R. R., Duyvesteyn, H. M. E., Mikolajek, H., Malinauskas, T., Tan, T. K., Rijal, P., Dumoux, M., Ward, P. N., Ren, J., Zhou, D., Harrison, P. J., Weckener, M., Clare, D. K., Vogirala, V. K., Radecke, J., Moynié, L., Zhao, Y., … Naismith, J. H. (2020). Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature Structural & Molecular Biology, 27(9), 846–854. https://doi.org/10.1038/s41594-020-0469-6
Irrgang, P., Gerling, J., Kocher, K., Lapuente, D., Steininger, P., Habenicht, K., Wytopil, M., Beileke, S., Schäfer, S., Zhong, J., Ssebyatika, G., Krey, T., Falcone, V., Schülein, C., Peter, A. S., Nganou-Makamdop, K., Hengel, H., Held, J., Bogdan, C., … Tenbusch, M. (2022). Class switch towards non-inflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Science Immunology, eade2798. https://doi.org/10.1126/sciimmunol.ade2798
Janjic, A., Wange, L. E., Bagnoli, J. W., Geuder, J., Nguyen, P., Richter, D., Vieth, B., Vick, B., Jeremias, I., Ziegenhain, C., Hellmann, I., & Enard, W. (2022). Prime-seq, efficient and powerful bulk RNA sequencing. Genome Biology, 23(1), 88. https://doi.org/10.1186/s13059-022-02660-8
Johnson, N. V., Wall, S. C., Kramer, K. J., Holt, C. M., Periasamy, S., Richardson, S., Suryadevara, N., Andreano, E., Paciello, I., Pierleoni, G., Piccini, G., Huang, Y., Ge, P., Allen, J. D., Uno, N., Shiakolas, A. R., Pilewski, K. A., Nargi, R. S., Sutton, R. E., … Georgiev, I. S. (2024). Discovery and Characterization of a Pan-betacoronavirus S2-binding antibody. bioRxiv, 2024.01.15.575741. https://doi.org/10.1101/2024.01.15.575741
Jorgolli, M., Nevill, T., Winters, A., Chen, I., Chong, S., Lin, F., Mock, M., Chen, C., Le, K., Tan, C., Jess, P., Xu, H., Hamburger, A., Stevens, J., Munro, T., Wu, M., Tagari, P., & Miranda, L. P. (2019). Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring. Biotechnology and Bioengineering, 116(9), 2393–2411. https://doi.org/10.1002/bit.27024
Kanyavuz, A., Marey-Jarossay, A., Lacroix-Desmazes, S., & Dimitrov, J. D. (2019). Breaking the law: unconventional strategies for antibody diversification. Nature Reviews Immunology, 19(6), 355–368. https://doi.org/10.1038/s41577-019-0126-7
Kastenschmidt, J. M., Sureshchandra, S., Jain, A., Hernandez-Davies, J. E., Assis, R. de, Wagoner, Z. W., Sorn, A. M., Mitul, M. T., Benchorin, A. I., Levendosky, E., Ahuja, G., Zhong, Q., Trask, D., Boeckmann, J., Nakajima, R., Jasinskas, A., Saligrama, N., Davies, D. H., & Wagar, L. E. (2023). Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. Immunity, 56(8), 1910-1926.e7. https://doi.org/10.1016/j.immuni.2023.06.019
Kim, W., Zhou, J. Q., Horvath, S. C., Schmitz, A. J., Sturtz, A. J., Lei, T., Liu, Z., Kalaidina, E., Thapa, M., Alsoussi, W. B., Haile, A., Klebert, M. K., Suessen, T., Parra-Rodriguez, L., Mudd, P. A., Whelan, S. P. J., Middleton, W. D., Teefey, S. A., Pusic, I., … Ellebedy, A. H. (2022). Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature, 604(7904), 141–145. https://doi.org/10.1038/s41586-022-04527-1
Kirk, A. M., Crawford, J. C., Chou, C.-H., Guy, C., Pandey, K., Kozlik, T., Shah, R. K., Chung, S., Nguyen, P., Zhang, X., Wang, J., Bell, M., Mettelman, R. C., Allen, E. K., Pogorelyy, M. V., Kim, H., Minervina, A. A., Awad, W., Bajracharya, R., … Thomas, P. G. (2024). DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Reports Medicine, 5(3), 101469. https://doi.org/10.1016/j.xcrm.2024.101469
Leggate, J., Allain, R., Isaac, L., & Blais, B. W. (2006). Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnology Letters, 28(19), 1587–1594. https://doi.org/10.1007/s10529-006-9128-1
Lindeman, I., Emerton, G., Mamanova, L., Snir, O., Polanski, K., Qiao, S.-W., Sollid, L. M., Teichmann, S. A., & Stubbington, M. J. T. (2018). BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nature Methods, 15(8), 563–565. https://doi.org/10.1038/s41592-018-0082-3
Lindeman, I., Emerton, G., Sollid, L. M., Teichmann, S. A., & Stubbington, M. J. T. (2017). BraCeR: Reconstruction of B-cell receptor sequences and clonality inference from single-cell RNA-sequencing. bioRxiv, 185504. https://doi.org/10.1101/185504
Linden, R. van der, Geus, B. de, Stok, W., Bos, W., Wassenaar, D. van, Verrips, T., & Frenken, L. (2000). Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. Journal of Immunological Methods, 240(1–2), 185–195. https://doi.org/10.1016/s0022-1759(00)00188-5
Muyldermans, S. (2013). Nanobodies: Natural Single-Domain Antibodies. Annual Review of Biochemistry, 82(1), 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
Phad, G. E., Pinto, D., Foglierini, M., Akhmedov, M., Rossi, R. L., Malvicini, E., Cassotta, A., Fregni, C. S., Bruno, L., Sallusto, F., & Lanzavecchia, A. (2022). Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts. Nature Immunology, 23(7), 1076–1085. https://doi.org/10.1038/s41590-022-01230-1
Pymm, P., Adair, A., Chan, L.-J., Cooney, J. P., Mordant, F. L., Allison, C. C., Lopez, E., Haycroft, E. R., O'Neill, M. T., Tan, L. L., Dietrich, M. H., Drew, D., Doerflinger, M., Dengler, M. A., Scott, N. E., Wheatley, A. K., Gherardin, N. A., Venugopal, H., Cromer, D., … Tham, W.-H. (2021). Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences, 118(19), e2101918118. https://doi.org/10.1073/pnas.2101918118
Rienzo, M., Jackson, S. J., Chao, L. K., Leaf, T., Schmidt, T. J., Navidi, A. H., Nadler, D. C., Ohler, M., & Leavell, M. D. (2021). High-throughput screening for high-efficiency small-molecule biosynthesis. Metabolic Engineering, 63, 102–125. https://doi.org/10.1016/j.ymben.2020.09.004
Ronsard, L., Yousif, A. S., Mohamed, F. A. N., Feldman, J., Okonkwo, V., McCarthy, C., Schnabel, J., Caradonna, T., Barnes, R. M., Rohrer, D., Lonberg, N., Schmidt, A., & Lingwood, D. (2023). Engaging an HIV vaccine target through the acquisition of low B cell affinity. Nature Communications, 14(1), 5249. https://doi.org/10.1038/s41467-023-40918-2
Scharer, C. D., Patterson, D. G., Mi, T., Price, M. J., Hicks, S. L., & Boss, J. M. (2020). Antibody-secreting cell destiny emerges during the initial stages of B-cell activation. Nature Communications, 11(1), 3989. https://doi.org/10.1038/s41467-020-17798-x
Setliff, I., Shiakolas, A. R., Pilewski, K. A., Murji, A. A., Mapengo, R. E., Janowska, K., Richardson, S., Oosthuysen, C., Raju, N., Ronsard, L., Kanekiyo, M., Qin, J. S., Kramer, K. J., Greenplate, A. R., McDonnell, W. J., Graham, B. S., Connors, M., Lingwood, D., Acharya, P., … Georgiev, I. S. (2019). High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell, 179(7), 1636-1646.e15. https://doi.org/10.1016/j.cell.2019.11.003
Shapiro, M. B., Boucher, J., Brousseau, A., Dehkharghani, A., Gabriel, J., Kamat, V., Patil, K., Gao, F., Walker, J., Kelly, R., & Souders, C. A. (2023). Alpaca Single B Cell Interrogation and Heavy-Chain-Only Antibody Discovery on an Optofluidic Platform. https://doi.org/10.1101/2023.02.10.528050
Solodkov, P. P., Najakshin, A. M., Chikaev, N. A., Kulemzin, S. V., Mechetina, L. V., Baranov, K. O., Guselnikov, S. V., Gorchakov, A. A., Belovezhets, T. N., Chikaev, A. N., Volkova, O. Y., Markhaev, A. G., Kononova, Y. V., Alekseev, A. Y., Gulyaeva, M. A., Shestopalov, A. M., & Taranin, A. V. (2024). Serial Llama Immunization with Various SARS-CoV-2 RBD Variants Induces Broad Spectrum Virus-Neutralizing Nanobodies. Vaccines, 12(2), 129. https://doi.org/10.3390/vaccines12020129
Torres, M., Fernandez-Fuentes, N., Fiser, A., & Casadevall, A. (2007). Exchanging Murine and Human Immunoglobulin Constant Chains Affects the Kinetics and Thermodynamics of Antigen Binding and Chimeric Antibody Autoreactivity. PLoS ONE, 2(12), e1310. https://doi.org/10.1371/journal.pone.0001310
Viant, C., Escolano, A., Chen, S. T., & Nussenzweig, M. C. (2021). Sequencing, cloning, and antigen binding analysis of monoclonal antibodies isolated from single mouse B cells. STAR Protocols, 2(2), 100389. https://doi.org/10.1016/j.xpro.2021.100389
Vincke, C., & Muyldermans, S. (2012). Single Domain Antibodies, Methods and Protocols. Methods in Molecular Biology, 911, 15–26. https://doi.org/10.1007/978-1-61779-968-6_2
Wagoner, Z. W., Mitul, M. T., & Wagar, L. E. (2024). Memory B-Cells, Methods and Protocols. Methods in Molecular Biology, 2826, 3–13. https://doi.org/10.1007/978-1-0716-3950-4_1
Wang, E., Cohen, A. A., Guzman, L. F. C., Bjorkman, P. J., & Chakraborty, A. K. (2023). Nanoparticle geometry, immune memory, and antigen presentation determine the cross-reactive antibody response against sarbecoviruses. The Journal of Immunology, 210(1_Supplement), 223.01-223.01. https://doi.org/10.4049/jimmunol.210.supp.223.01
Wang, Y., Wang, X., Luu, L. D. W., Li, J., Cui, X., Yao, H., Chen, S., Fu, J., Wang, L., Wang, C., Yuan, R., Cai, Q., Huang, X., Huang, J., Li, Z., Li, S., Zhu, X., & Tai, J. (2022). Single‐cell transcriptomic atlas reveals distinct immunological responses between COVID‐19 vaccine and natural SARS‐CoV‐2 infection. Journal of Medical Virology, 94(11), 5304–5324. https://doi.org/10.1002/jmv.28012
Weinstein, J. B., Bates, T. A., Leier, H. C., McBride, S. K., Barklis, E., & Tafesse, F. G. (2022). A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience, 25(3), 103960. https://doi.org/10.1016/j.isci.2022.103960
Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Danquah, W., Rissiek, B., Scheuplein, F., Schwarz, N., Adriouch, S., Boyer, O., Seman, M., Licea, A., Serreze, D. V., Goldbaum, F. A., Haag, F., & Koch-Nolte, F. (2009). Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology, 198(3), 157–174. https://doi.org/10.1007/s00430-009-0116-7
Wrapp, D., Vlieger, D. D., Corbett, K. S., Torres, G. M., Wang, N., Breedam, W. V., Roose, K., Schie, L. van, Team, V.-C. C.-19 R., Hoffmann, M., Pöhlmann, S., Graham, B. S., Callewaert, N., Schepens, B., Saelens, X., & McLellan, J. S. (2020). Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell, 181(5), 1004-1015.e15. https://doi.org/10.1016/j.cell.2020.04.031
Xu, J., Xu, K., Jung, S., Conte, A., Lieberman, J., Muecksch, F., Lorenzi, J. C. C., Park, S., Schmidt, F., Wang, Z., Huang, Y., Luo, Y., Nair, M. S., Wang, P., Schulz, J. E., Tessarollo, L., Bylund, T., Chuang, G.-Y., Olia, A. S., … Casellas, R. (2021). Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 595(7866), 278–282. https://doi.org/10.1038/s41586-021-03676-z
Yu, P., Ran, J., Yang, R., Zhu, H., Lu, S., Wu, Y., Zhao, T., & Xiong, T. (2024). Rapid isolation of pan-neutralizing antibodies against Omicron variants from convalescent individuals infected with SARS-CoV-2. Frontiers in Immunology, 15, 1374913. https://doi.org/10.3389/fimmu.2024.1374913
Zang, T., Kuffour, E. O., Baharani, V. A., Canis, M., Schmidt, F., Silva, J. D., Lercher, A., Chaudhary, P., Hoffmann, H.-H., Gazumyan, A., Miranda, I. C., MacDonald, M. R., Rice, C. M., Nussenzweig, M. C., Hatziioannou, T., & Bieniasz, P. D. (2023). Heteromultimeric sarbecovirus receptor binding domain immunogens primarily generate variant- specific neutralizing antibodies. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2317367120
Zhang, G., Liu, J., Fan, W., Chen, Q., & Shi, B. (2017). An Efficient Transient Expression System for Enhancing the Generation of Monoclonal Antibodies in 293 Suspension Cells. Current Pharmaceutical Biotechnology, 18(4), 351–357. https://doi.org/10.2174/1389201018666170320110545
Zost, S. J., Gilchuk, P., Case, J. B., Binshtein, E., Chen, R. E., Nkolola, J. P., Schäfer, A., Reidy, J. X., Trivette, A., Nargi, R. S., Sutton, R. E., Suryadevara, N., Martinez, D. R., Williamson, L. E., Chen, E. C., Jones, T., Day, S., Myers, L., Hassan, A. O., … Crowe, J. E. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 584(7821), 443–449. https://doi.org/10.1038/s41586-020-2548-6
Zost, S. J., Gilchuk, P., Chen, R. E., Case, J. B., Reidy, J. X., Trivette, A., Nargi, R. S., Sutton, R. E., Suryadevara, N., Chen, E. C., Binshtein, E., Shrihari, S., Ostrowski, M., Chu, H. Y., Didier, J. E., MacRenaris, K. W., Jones, T., Day, S., Myers, L., … Crowe, J. E. (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 26(9), 1422–1427. https://doi.org/10.1038/s41591-020-0998-x